Math 656 « Midterm Exam ¢ March 8, 2016 ¢ Victor Matveev

1) (15pts) Find all values of z in polar or Cartesian form, and plot them as points in the complex plane:
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In the last step we used the fact that 1n(2 —\/3) = —ln(2 + \/5) because (2 - \/3)(2 + \/5) =1




2) (15pts) Sketch the image of the region {z € C : 1<|z|<e, Imz >0} under the mapping w=iLog(iz). You
may consider this transform as a sequence of 3 separate, simple steps. Hint: use polar form for the original
variable z, and note the slight complication from the fact that Log(z) is the branch with argz e (-7, 7]

Step 1:

- . . T
Z — Z =iz : rotation by —

"Half-ring" in the upper half-plane = "Half-ring" in the right half-plane

{lﬁ\zlﬁe, OSargZSﬂ} = {IS\Z\Se, argfe{%,ﬂ}u{—ﬂ,—%}} Note the branch cut!
Step 2:

Z—> ¢ =Log(Z):

"Half-ring" in the right half-plane = Two rectangles (would be 1 rectangle if not for the branch cut!)
{1 <|Z|<e, argz e |:%,7Z':| u[—ﬂ,—g}} = {0 <Red <1, Im{ € [—ﬂ',—%:lu[%,ﬂ}}

Step 3: £ — w=i( : rotate two rectangles by %:
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3) (25pts) Calculate each integral over the indicated circle, or explain why the integral equals zero:

dz

a) (j; (—9 =0 by since the nearest singularity is at z =iz, outside the contour
1z=3 (e” +1
b) (j) lz() =0 by since the anti-derivative F(z) = —;8 exists on entire contour
lz[=5 (ez +1 S(ez + 1)
sin(zz) dz sin(zz) dz d
) § ——2L—=¢ ———=2zi—sin(z’) =27i(2i)cos(-1)=
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d) <ﬁ %: z i 2\/—{e 2 —elz} 41\/E Equivalently, can obtain this by parametrizing z=Re®
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4) (15pts) Find the bound on

J- 2coshz i
zZ

+2iz—1
points z=3/ and z=3. Hint: express cosh z in terms of exponentials.

, Where the integration contour C is a straight line connecting
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Here min|z + z| is the shortest squared distance from —i to the line from 3i to 3
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Shortest distance is shown in the Figure: min z+z| =2’+2°=8 = I ———dz| < 2
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5) (15pts) Consider any branch of function f(z) = ( z
Z —

1/2
1] , describe its branch cut(s) and describe the jump

discontinuity of this function across the branch cut(s). Finally, use this branch to compute f(i)
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z =nexp(ib)
Let's choose the branch defined by —r<0,,<7
z—1=rexp(i6,) h
T 3w
rn=1, O6=x/2 1 2.4 i 2+1 2-1
Compute /(i) for this prescription: l ] = f(i)=,]=e > = c _|= \/\/_ * —i\/\/_
r=N2, 6,=37/4 J2 i 2 2
This branch of f(z) has a cut on the real axis x € (0, 1):
e x €(—,0): 6, both jump by 27 = 6, — 6, is continuous = no cut
e xe (0, 1): 8, jumps by 27 = f(z) acquires jump factor \/Z‘exp(—i 277[) =— |+ } branch cut
r2 r2
® xe(l, +): g, are continuous = no cut

6) (15pts) Can the function f(z) =¢""% pe analytic anywhere in domain D if 8 (z) is a real non-constant
function in D? Use any method or theorem you like to answer this question.

Can’t be analytic anywhere (apart from any open subset of D where 6(2) = const ). Two ways to prove this:
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This equality obviously can’t be satisfied unless both derivatives are zero, which corresponds to constant 6.

2. Method 2: Max Modulus Principle, but with an extra step, since Max Modulus Principle doesn’t rule out the
possibility that | f | = const for non-constant Re(f) and Im(f) [no points subtracted if you didn’t do this step]:

11| =™e ™) =1=const; |f| =u® +* . Let's prove that u and v are also constant, and thus 6=const:

Maximum of u? is achieved on the boundary (proven in the homework), but for non-constant u this would
correspond to the minimum of v2, which contradicts the Maximum / Minimum Principle for harmonic

functions proven in the homework. Therefore, constant |f| is only possible if both u and v are constant.

Finally, note that the Liouville Theorem is not applicable here, since it only concerns the case D =C




7) (15 pts) Solve the boundary value problem for the Laplace’s equation V>® =0 in an infinite strip, with
boundary conditions indicated below (@ is a real function). Hint: consider analytic functions of form
f(z) = Ae**, where A and k are real constants. Make sure to satisfy all four boundary conditions!

®(0, y) = sin 2y — 3 sin 3y

Iy O(x, 7)=0
I
VP =0
0 O(x, 0)=0 X

®(x—00, y) is bounded

Solution is obvious: pick negative k (k =—2 and k =—3) to ensure that the solution is bounded at x — o,

and use imaginary part of the analytic function as the solution: (DZIm[Ale"ZZ + Aze_k}

Boundary condition on the left gives 4, and 4,:

k=-2:4=-1
k=-3:4 =43

= ®(x,y)=Im[—e ¥ +3¢ |=—¢ " sin(-2y) +3e " sin(-3y) =

e**sin(2y) -3¢ sin(3y)




